{ Considering I/O Processing in CloudSim for Performance and Energy Evaluation }

b com

- Context
- Introduction & Problem Statement
- Contribution
- Evaluation
- Conclusion & Future Work

b com

Context

General Context

This work is part of a project that aims to optimize performance and energy consumption of a hybrid storage system in the context of IaaS Cloud

General Context

This work is part of a project that aims to optimize performance and energy consumption of a hybrid storage system in the context of IaaS Cloud

Storage Management Model

The storage management is an autonomic loop that obeys the MAPE-K (Monitor, Analyze, Plan, Execute - Knowledge) model :

<u>k com</u>

Introduction & Problem Statement

c com Introduction & Problem Statement

Cloud Infrastructure Power Consumption

c com

Introduction & Problem Statement

Cloud Infrastructure Power Consumption

Minimizing infrastructure power consumption : an important concern for Cloud providers

- Minimizing infrastructure power consumption : an important concern for Cloud providers
- > VM placement optimization methods : popular approaches to minimize data centers power consumption

- Minimizing infrastructure power consumption : an important concern for Cloud providers
- > VM placement optimization methods : popular approaches to minimize data centers power consumption

State of the art

- Minimizing infrastructure power consumption : an important concern for Cloud providers
- > VM placement optimization methods : popular approaches to minimize data centers power consumption

State of the art

> VM placement optimization : usually based on CPU load

- Minimizing infrastructure power consumption : an important concern for Cloud providers
- > VM placement optimization methods : popular approaches to minimize data centers power consumption

State of the art

- > VM placement optimization : usually based on CPU load
- > **Storage activities**: may greatly contribute to the overall data center power consumption (up to 40% [1])

- Minimizing infrastructure power consumption : an important concern for Cloud providers
- > VM placement optimization methods : popular approaches to minimize data centers power consumption

State of the art

- > VM placement optimization : usually based on CPU load
- > **Storage activities**: may greatly contribute to the overall data center power consumption (up to 40% [1])
- CloudSim: the most used simulator for VM placement approaches implementation and evaluation

[1] Z. Li, K. M. Greenan, A. W. Leung, E. Zadok "Power Consumption in Enterprise-Scale Backup Storage Systems"

Problem Statement: CloudSim

Power Consumption $\&$ I/O Workload Execution

During I/O workload execution, power is mainly consumed by:

During I/O workload execution, power is mainly consumed by:

Storage system components

During I/O workload execution, power is mainly consumed by:

- Storage system components
- > CPU and memory when processing I/Os (i.e. executing the I/O software stack)

During I/O workload execution, power is mainly consumed by:

- > Storage system components
- > CPU and memory when processing I/Os (i.e. executing the I/O software stack)

CloudSim & Storage Capabilities

During I/O workload execution, power is mainly consumed by:

- > Storage system components
- > CPU and memory when processing I/Os (i.e. executing the I/O software stack)

CloudSim & Storage Capabilities

> VM I/O workload execution : not considered (i.e. its related time and power consumption)

During I/O workload execution, power is mainly consumed by:

- > Storage system components
- > CPU and memory when processing I/Os (i.e. executing the I/O software stack)

CloudSim & Storage Capabilities

- > VM I/O workload execution : not considered (i.e. its related time and power consumption)
- Storage system: limited and consists of an HDD-based SAN (Storage Area Network)

b com

Contribution

t com

Contribution

Contributions Summary		

Contributions Summary

We propose an extension for CloudSim storage capabilities in form of three contributions:

Contributions Summary

We propose an extension for CloudSim storage capabilities in form of three contributions:

Considering VMs I/O workload execution and related time and power consumption

Contributions Summary

We propose an extension for CloudSim storage capabilities in form of three contributions:

- Considering VMs I/O workload execution and related time and power consumption
- Adding Flash-based SSD and local storage support, and power related capabilities

Contributions Summary

We propose an extension for CloudSim storage capabilities in form of three contributions:

- Considering VMs I/O workload execution and related time and power consumption
- Adding Flash-based SSD and local storage support, and power related capabilities
- Adding a model to compute the CPU time related to I/O workload processing

Time Computation

Before the Extension		
		J

Before the Extension

CloudSim I/O activity time: only affected by the Cloudlet ¹transfer during its submission or migration

Before the Extension

CloudSim I/O activity time: only affected by the Cloudlet ¹transfer during its submission or migration

1. In CloudSim, a Cloudlet is a process representing a CPU workload and executed by a $\ensuremath{\mathsf{VM}}$

fter the Extension	
	1
	1
	1
	1
	1
	1
	1
	1
	1

After the Extension

Our extension adds two events affecting the simulation time:

After the Extension

Our extension adds two events affecting the simulation time :

> I/O workload execution (i.e. storage device and CPU time)

b com

After the Extension

Our extension adds two events affecting the simulation time :

- I/O workload execution (i.e. storage device and CPU time)
- VM image (virtual disk) creation (e.g. copy from a repository to the local storage)

After the Extension

Our extension adds two events affecting the simulation time:

- > I/O workload execution (i.e. storage device and CPU time)
- > VM image (virtual disk) creation (e.g. copy from a repository to the local storage)

Figure - Time model after the extension

Before the Extension	ì
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı

t com

Before the Extension

CloudSim power model: uses only hosts CPU utilization to determine their power consumption

Before the Extension

CloudSim power model: uses only hosts CPU utilization to determine their power consumption

Figure - Power model before the extension

Power Computation

After the Extension

After the Extension

Our extension adds to the existing power model the power consumption generated by the I/O workload execution [2]

After the Extension

Our extension adds to the existing power model the power consumption generated by the I/O workload execution [2]

Figure - Power model after the extension

^[2] H. Ouarnoughi, J. Boukhobza, F. Singhoff, S. Rubini: "A Cost Model for Virtual Machine Storage in Cloud IaaS Context"

Storage Device Support

Before the Extension	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	J

Before the Extension

Native CloudSim storage system : an HDD-based SAN, shared with all data center's hosts

Before the Extension

- Native CloudSim storage system : an HDD-based SAN, shared with all data center's hosts
- > Storage system performances: $f(max(HDD_{Performance}, SAN_{Throughput}))$

Before the Extension

- Native CloudSim storage system : an HDD-based SAN, shared with all data center's hosts
- > Storage system performances : $f(max(HDD_{Performance}, SAN_{Throughput}))$

Figure - Data center storage system before the extension

Storage Device Support

After the Extension		

After the Extension

Three main storage system capabilities:

After the Extension

Three main storage system capabilities:

Support for flash-based SSD

c com

After the Extension

Three main storage system capabilities:

- Support for flash-based SSD
- > Support for local storage (i.e. DAS storage)

After the Extension

Three main storage system capabilities:

- Support for flash-based SSD
- > Support for local storage (i.e. DAS storage)
- More storage device attributes (e.g. power, performance, reliability, etc)

After the Extension

Three main storage system capabilities:

- Support for flash-based SSD
- > Support for local storage (i.e. DAS storage)
- More storage device attributes (e.g. power, performance, reliability, etc)

Figure – Data center storage system after the extension

I/O Workload and CPU Time

CPU time for I/O Workload

> VM I/O workload execution : storage system activities + CPU utilization due to I/O software stack execution

CPU time for I/O Workload

- VM I/O workload execution : storage system activities + CPU utilization due to I/O software stack execution
- ➤ I/O workload → CPU utilization : a correlation model that gives CPU time depending on I/O workload characteristics

CPU time for I/O Workload

- VM I/O workload execution : storage system activities + CPU utilization due to I/O software stack execution
- ➤ I/O workload → CPU utilization : a correlation model that gives CPU time depending on I/O workload characteristics

t com

Evaluation

Evaluation: Summary

Evaluation Methodology	
	J

Evaluation Methodology

Two steps to evaluate CloudSim storage extensions:

Evaluation: Summary

Evaluation Methodology

Two steps to evaluate CloudSim storage extensions :

> **Real workload execution**: running experiments in a real environment + collecting CPU, memory, and I/O measures.

Evaluation Methodology

Two steps to evaluate CloudSim storage extensions :

- > **Real workload execution**: running experiments in a real environment + collecting CPU, memory, and I/O measures.
- Workload simulation: replaying the same scenario in CloudSim + turning the storage system ON/OFF

Evaluation Methodology

Two steps to evaluate CloudSim storage extensions:

- > **Real workload execution**: running experiments in a real environment + collecting CPU, memory, and I/O measures.
- Workload simulation: replaying the same scenario in CloudSim + turning the storage system ON/OFF

Figure - Evaluation methodology

t com

Real workload execution

The real workload execution phase includes two steps :

Real workload execution

The real workload execution phase includes two steps :

Workload execution: VMs running encoding video benchmark as a real use case

Real workload execution

The real workload execution phase includes two steps :

- Workload execution: VMs running encoding video benchmark as a real use case
- Trace collection: monitoring the host CPU, memory utilization + tracing I/Os

Real workload execution

The real workload execution phase includes two steps :

- Workload execution: VMs running encoding video benchmark as a real use case
- Trace collection: monitoring the host CPU, memory utilization + tracing I/Os

Workload simulation

Real workload execution

The workload simulation phase includes two steps:

Real workload execution

The workload simulation phase includes two steps :

Simulation using real traces: replaying traces in CloudSim + varying parameters (i.e. number of VMs/Host, storage system ON/OFF, and storage device HDD/SSD)

Real workload execution

The workload simulation phase includes two steps :

- Simulation using real traces: replaying traces in CloudSim + varying parameters (i.e. number of VMs/Host, storage system ON/OFF, and storage device HDD/SSD)
- Simulation results comparison : power consumption to quantify I/O workload execution impact

Real workload execution

The workload simulation phase includes two steps :

- Simulation using real traces: replaying traces in CloudSim + varying parameters (i.e. number of VMs/Host, storage system ON/OFF, and storage device HDD/SSD)
- Simulation results comparison : power consumption to quantify I/O workload execution impact

Evaluation Metrics

Our evaluation results show two evaluation metrics:

Evaluation Metrics

Our evaluation results show two evaluation metrics:

> Power consumption related to I/O processing \rightarrow validate the impact of I/Os on the overall power consumption

Evaluation Metrics

Our evaluation results show two evaluation metrics:

- > Power consumption related to I/O processing \rightarrow validate the impact of I/Os on the overall power consumption
- Difference between simulations using real traces and using correlation model → validate its accuracy

Evaluation Results & Discussion

Discussion

Discussion

 \rightarrow Energy consumption \nearrow when to the number of VMs/Host \nearrow

Discussion

- > Energy consumption ✓ when to the number of VMs/Host ✓
- > Difference between HDD and SSD energy consumption

Discussion

- \rightarrow Energy consumption \nearrow when to the number of VMs/Host \nearrow
- > Difference between HDD and SSD energy consumption
- \gt Correlation model vs real traces : \sim 12% average error rate

k com

Conclusion & Future Work

23/6/2016

Conclusion & Future Work

k com

Conclusion

We propose an extension of CloudSim to consider VM I/O workload processing in form of three contributions :

We propose an extension of CloudSim to consider VM I/O workload processing in form of three contributions:

> Updating the time and energy models of CloudSim

We propose an extension of CloudSim to consider VM I/O workload processing in form of three contributions :

- Updating the time and energy models of CloudSim
- > Considering different storage devices (i.e. HDD and SSD)

We propose an extension of CloudSim to consider VM I/O workload processing in form of three contributions :

- Updating the time and energy models of CloudSim
- > Considering different storage devices (i.e. HDD and SSD)
- Including a CPU correlation model that depends on I/O workload characteristics and storage device type

We propose an extension of CloudSim to consider VM I/O workload processing in form of three contributions :

- Updating the time and energy models of CloudSim
- > Considering different storage devices (i.e. HDD and SSD)
- Including a CPU correlation model that depends on I/O workload characteristics and storage device type

Future Work

We propose an extension of CloudSim to consider VM I/O workload processing in form of three contributions :

- Updating the time and energy models of CloudSim
- Considering different storage devices (i.e. HDD and SSD)
- Including a CPU correlation model that depends on I/O workload characteristics and storage device type

Future Work

Using this implementation in a VM placement optimization approach

We propose an extension of CloudSim to consider VM I/O workload processing in form of three contributions:

- Updating the time and energy models of CloudSim
- Considering different storage devices (i.e. HDD and SSD)
- Including a CPU correlation model that depends on I/O workload characteristics and storage device type

Future Work

- Using this implementation in a VM placement optimization approach
- Studying and integrating the problem of interference between VMs sharing the same storage device

k com

My wish...

More research experience, so I am looking for a postdoctoral position!

Thanks

{ hamza.ouarnoughi@b-com.com }